Notícias
Para dizer o mínimo, este material quebra um princípio fundamental que descreve os sistemas mecânicos, chamado reciprocidade, que estabelece que obteremos sempre a mesma resposta quando empurrarmos uma estrutura de um lado ou de outro.
Em vez disso, este novo material transfere facilmente o movimento mecânico aplicado de um lado, mas bloqueia esse movimento vindo do outro lado.
Esse comportamento não-recíproco pode ser entendido como uma espécie de "diodo mecânico" - enquanto os diodos eletrônicos deixam que a corrente passe em apenas um sentido, o diodo mecânico faz o mesmo com o movimento, funcionando como uma espécie de escudo que bloqueia a energia mecânica vinda de um lado, mas deixa a energia mecânica vindo do outro lado passar sem problemas.
Corentin Coulais e seus colegas do Instituto AMOLF, na Holanda, quebraram a reciprocidade mecânica usando metamateriais, materiais sintéticos com propriedades não encontradas em materiais naturais. O trabalho mostra a versatilidade desses materiais, expandindo para o movimento o que eles vêm fazendo há algum tempo para sinais de outra natureza, como as ondas eletromagnéticas e acústicas.
Escudo contra o movimento
A estrutura do metamaterial consiste em uma rede de quadrados e diamantes completamente homogênea em toda a sua extensão. No entanto, cada unidade geométrica fica ligeiramente inclinada de uma forma precisa, e esta diferença sutil controla a forma como o metamaterial responde aos estímulos externos.
"O metamaterial como um todo reage assimetricamente, com um lado muito rígido e um lado muito mole," disse Dimitrios Sounas, coautor do trabalho. "A relação entre a assimetria da unidade e a localização do lado mole pode ser prevista por uma estrutura matemática muito genérica chamada topologia. Quando as unidades arquitetônicas se inclinam para a esquerda, o lado direito do metamaterial ficará muito mole e vice-versa".
Continua depois da publicidade |
Em outras palavras, quando uma força é aplicada no lado macio do metamaterial, ele induz rotações dos quadrados e diamantes dentro da estrutura, mas somente nas proximidades do ponto de pressão, e o efeito no outro lado é pequeno. Quando a mesma força é aplicada no lado rígido, o movimento se propaga e é amplificado ao longo de todo o material, produzindo um grande efeito no outro lado. Como resultado, empurrar da esquerda ou da direita resulta em respostas opostas, produzindo uma forte não-reciprocidade mesmo para pequenas forças aplicadas.
Atuadores e próteses
Quebrar a simetria do movimento pode permitir maior controle sobre sistemas mecânicos e maior eficiência. Estes metamateriais não-recíprocos podem ser utilizados para projetar novos tipos de dispositivos mecânicos: por exemplo, atuadores (componentes de uma máquina responsáveis pelo movimento ou controle de um mecanismo) e outros dispositivos que podem melhorar a absorção, conversão e colheita de energia, além de robôs moles e próteses mais confortáveis.
"Os metamateriais mecânicos que criamos colocam novos elementos na paleta que os cientistas dos materiais podem usar para projetar estruturas mecânicas," disse o professor Andrea Alù, coordenador da equipe. "Isso pode ser de extremo interesse para aplicações nas quais é desejável romper a simetria natural com a qual o deslocamento de moléculas viaja na microestrutura de um material".
Bibliografia do estudo aqui.
Gostou? Então compartilhe:
Faça seu login
Ainda não é cadastrado?
Cadastre-se como Pessoa física ou Empresa